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Abstract. We demonstrate the completeness of boson- and spin-coherent states generated by
binomial distribution by furnishing the exact analytical form of their respective positive weight
functions in resolution of unity. These weight functions are solutions of the associated truncated
Stieltjes power–moment problem. We elaborate on the non-unique character of these solutions.

1. Introduction

Solving a quantum mechanical problem often amounts to forming particular linear
combinations of eigenfunctions of a Hermitian operator. The coefficients of this linear
combination are then parametrized by a limited number of parameters whose choice optimizes
the solution. The standard normalized coherent states |z〉 [1] are formed by a special
infinite combination of eigenstates of a linear harmonic oscillator Ĥ0 = â†â, denoted by
|n〉 ([â, â†] = 1, Ĥ0|n〉 = n|n〉, 〈n|n′〉 = δn,n′ , n = 0, 1, . . . ,∞), such that all the coefficients
are parametrized by a single complex number z:

|z〉 = exp

(
−|z|2

2

)
exp(zâ†)|0〉 (1)

= exp

(
−|z|2

2

) ∞∑
n=0

zn√
n!

|n〉 (2)

where in equation (1), |0〉 is the ground state of Ĥ0 (the vacuum).
Likewise, if we consider a single spin S interacting with the magnetic field 
H = (0, 0, h),

h > 0, through ĤS = −hŜz then we can use, for complex µ, the eigenstates |p〉 of ĤS

(Ŝz|p〉 = (S − p)|p〉, 〈p|p′〉 = δp,p′ , 0 � p � 2S) to construct the normalized spin-coherent
state [2]:

|µ〉 = N − 1
2 (|µ|2) exp(µŜ−)|0〉 (3)

= 1

(1 + |µ|2)S
2S∑
p=0

(
2S
p

)1
2

µp|p〉 (4)

where in equation (3), |0〉 is the ground state of ĤS with 
̂
S ‖ 
H . In general, for z �= z′, µ �= µ′,

〈z|z′〉 �= 0 �= 〈µ|µ′〉, with one exception: if µ′ = −1/µ∗, then 〈µ|µ′〉 = 0.

0305-4470/00/142907+10$30.00 © 2000 IOP Publishing Ltd 2907



2908 J-M Sixdeniers and K A Penson

The parametrization in terms of a single complex number z in equation (1) and µ in
equation (3) permits one to demonstrate that |z〉 and |µ〉 form complete sets, i.e. they allow the
resolution of unity in their respective state spaces where

Ib =
∞∑
n=0

|n〉〈n| (5)

and

I2S =
2S∑
p=0

|p〉〈p| (6)

hold. The resolution of unity in terms of |z〉 and |µ〉 can be achieved by finding positive
weight functions Wb(|z|2) and V2S(|µ|2) such that, for d2λ ≡ d(Re λ) d(Im λ), λ = z, µ, the
following equations are valid:∫ ∫

C

d2z|z〉Wb(|z|2)〈z| = Ib (7)∫ ∫
C

d2µ|µ〉V2S(|µ|2)〈µ| = I2S. (8)

The functions Wb(|z|2) and V2S(|µ|2) are known [1, 2]:

Wb(|z|2) = 1

π
= const (9a)

V2S(|µ|2) = 2S + 1

π
(1 + |µ|2)−2. (9b)

The existence of the resolution of unity is an important ingredient in the general definition of
coherent states [3] as it restricts very seriously possible function sets. Moreover, the weight
function intervenes directly when the coherent states are used in variational treatment of
thermodynamics via Lieb–Berezin inequalities [4].

In spite of the huge literature on coherent states and their applications [1,5], there are only
a few examples of group-generated coherent states for which the weight function is actually
explicitly known [6–11]. The situation is even less satisfactory for the states generated without
any underlying group structure, i.e. without using the exponential function at all. Recently
progress in this direction has been achieved by finding a positive weight function for coherent
states generated by generalized exponential functions [12], and by some special functions [13].

In this work we shall consider the boson and spin states generated by binomial distributions
and demonstrate their completeness.

2. Binomial boson state

The binomial coherent states (BS) were introduced in [14]. They are finite linear combinations
of the number states |n〉 of the harmonic oscillator Hamiltonian Ĥ0. When parametrized in
terms of complex y = reiδ , the normalized BS, for η = sin2 r , for |0〉 vacuum of Ĥ0 reads [15]:

|y;M〉 =
M∑
n=0

[(
M

n

)
ηn(1 − η)M−n

] 1
2 e−i(δ+π)n

√
n!

(a†)n|0〉 1 � M < ∞. (10)

As the su(2) algebra involved here is the same as in the case of spin-coherent states |µ〉
(see, equation (4)), then the resolution of identity for |y;M〉 is realized with equation (9b) for
2S = M and |µ|2 = r2.
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New kinds of binomial coherent states were introduced recently in [16]. They are defined
for complex λ, integer M and |0〉 the vacuum of Ĥ0, as

|λ;M〉 = N − 1
2

M (|λ|2)(â† + λ)M |0〉 1 � M < ∞. (11)

Many expectation values of physical quantitites in these states were calculated and their
relevance to the experiments discussed [16]. Evidently these states contain contributions of the
first M states of the harmonic oscillator. We will consider now the problem of completeness
of |λ;M〉. Following [16], we expand the binomial and using (â†)n|0〉 = √

n!|n〉 we rewrite
equation (11) as

|λ;M〉 = N − 1
2

M (|λ|2)
M∑
n=0

M!

(M − n)!
√
n!
λM−n|n〉 (12)

from which the normalization NM(|λ|2) follows:

NM(|λ|2) = M!
M∑
n=0

M!

(M − n)!n!

1

n!
|λ|2n

= M!LM(−|λ|2) (13)

where LM(x) is the Mth Laguerre polynomial,

LM(x) =
M∑
n=0

(−1)n
1

n!

(
M

M − n

)
xn. (14)

We observe that |λ;M〉 is normalizable only for finite M , otherwise for M → ∞ and
|λ| = const NM(|λ|2) diverges. We shall now require the resolution of unity in the subspace
of M + 1 states:∫ ∫

C

d2λ|λ;M〉WM(|λ|2)〈λ;M| =
M∑
n=0

|n〉〈n| = IM (15)

i.e. we attempt to find a positive WM(|λ|2) satisfying equation (15). Substitute equations (12)
and (13) into equation (15), use d2λ = 1

2 d(|λ|2) dθ , (λ = |λ|eiθ ), and perform the angular
integration. Then we obtain for |λ|2 ≡ x:

π

M∑
n=0

|n〉〈n|
[

M!

((M − n)!)2n!

∫ ∞

0
xM−n WM(x)

LM(−x) dx

]
= IM (16)

or the conditions on WM(x)

π

∫ ∞

0
xM−n

[
WM(x)

LM(−x)
]

dx = ((M − n)!)2n!

M!
n = 0, 1, . . . ,M (17)

which upon redefining n → M − n, become

π

∫ ∞

0
xnW̃M(x) dx = (n!)2(M − n)!

M!
n = 0, 1, . . . ,M (18)

which is the truncated Stieltjes power–moment problem [17] for the unknown function
W̃M(x) = WM(x)/LM(−x). The difficult problem of proving the existence of the solution
W̃M(x) > 0 in equation (18) will be overcome by a construction of such a solution. We will
interpret equation (18) as the inverse Mellin transform problem [18] as done in related contexts
before [12, 13, 19], by setting for complex s, n → s − 1 and rewriting equation (18) as

π

∫ ∞

0
xs−1W̃M(x) dx =  2(s) (M + 2 − s)

M!
≡ πM[W̃M(x); s] (Re s < M + 2).

(19)



2910 J-M Sixdeniers and K A Penson

In other words

πW̃M(x) = 1

2π i

∫ +i∞

−i∞

 2(s) (M + 2 − s)

M!
x−s ds (20)

= M−1

[
 2(s) (M + 2 − s)

M!
; x
]

(Re s < M + 2). (21)

In equations (19) and (21) f ∗(s) = M[f (x); s] is the Mellin transform of f (x) and
f (x) = M−1[f ∗(s); x] is the inverse Mellin transform of f ∗(s) [18]. The complex integration
in equation (20) can be avoided if one uses the Mellin convolution property of inverse Mellin
transforms [20] (also called the generalized Parseval formula), which for arbitrary f ∗(s) and
g∗(s), for which f (x) and g(x) exist, states that∫ ∞

0
f
(x
t

)
g(t)

1

t
dt = 1

2π i

∫ +i∞

−i∞
f ∗(s)g∗(s)x−s ds. (22)

In applying equation (22) to (20) we choose f ∗(s) ≡  (M + 2 − s) (s) with Re s < M + 2,
which identifies f (x) as

M−1[f ∗(s); x] = (M + 1)!/(1 + x)M+2 (23)

and g∗(s) ≡  (s)/M! which results in g(x) = e−x/M!, and obtain

W̃M(x) = (M + 1)!

πM!

∫ ∞

0

e−t

(1 + x
t
)M+2

1

t
dt (24)

= (M + 1)

π

∫ ∞

0

tM+1e−t

(t + x)M+2
dt (25)

which is a positive function of x. We call it the principal solution. The integral in equation (25)
can be expressed in terms of known functions in several ways. Using the formula (6.10) of [20],
equation (25) can be written in terms of Tricomi’s integral $(a; c; z) as

W̃M(x) = (M + 1)

π
 (M + 2)$(M + 2; 1; x) (26)

where

$(a; c; z) = 1

 (a)

∫ ∞

0
e−zt ta−1(1 + t)c−a−1 dt (Re a > 0,Re z > 0) (27)

is the integral representation of the confluent hypergeometric function of Tricomi, $(a; c; z).
Another form of equation (25) is obtained if we change the variable y = t + x, expand the
binomial (y − x)M+1 in the resulting integrand and integrate term by term. The equation
obtained is

W̃M(x) = WM(x)

LM(−x) = M + 1

π
ex

M+1∑
n=0

(−1)n
(
M + 1
n

)
En+1(x) (28)

where Ek(x) is the generalized exponential integral of order k defined by [22]:

Ek(x)
def=
∫ ∞

1

e−xt

t k
dt k = 0, 1, 2, . . . Re x > 0. (29)

In figure 1 we have presented the weight functions WM(x) for M = 2, 4, 6, 10. They are
positive for all x > 0 and thereby we conclude that |λ;M〉 of equation (11) are a complete set.
In figure 2 we have presented the functions W̃M(x), the principal solutions of equation (18).

Note that the solutions of a truncated moment problem are never unique. A minimal
set of additional solutions is obtained by adding to the principal solution a function whose
exactly M + 1 first moments vanish, under the condition that the resulting sum be strictly
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Figure 1. WM(x) versus x for M = 2, 4, 6, 10. The lowest curve corresponds to M = 2, the two
higher correspond to M = 4 and 6, and the highest curve corresponds to M = 10.
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Figure 2. W̃M(x) versus x for M = 2, 4, 6, 10. For x < 0.1, the lowest curve corresponds to
M = 2, the two higher correspond to M = 4 and 6, and the highest curve corresponds to M = 10.

positive. In a separate publication we have developed general methods to produce many
distinct families of functions with first M + 1 moments vanishing [21]. We quote one of them
here: φM+1(x) = e−xLM+1(x), where LM(x) is the Laguerre polynomial. Consequently an
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infinite one-parameter family of additional solutions of equation (18) are given by

W̃M(x; κ) = W̃M(x)

(
1 + κ

e−xLM+1(x)

W̃M(x)

)
(30)

where κ < κM to assure the positivity of W̃M(x; κ): κ1 = 1
8 , κ2 = 1

14 , κ3 = 1
44 , κ4 = 1

88 , . . .

etc.

3. Binomial spin-coherent state

We now construct the analogy of the spin-coherent state of equation (3) using a power of a
binomial instead of an exponential. Consider a single particle of spin S, (S = 1

2 , 1, 3
2 , . . .),

and the state |0〉, the ground state of ĤS , defined as Ŝz|0〉 = S|0〉. The spin-lowering operator
Ŝ− is nilpotent of order 2S + 1, i.e. (Ŝ−)2S+1 ≡ 0. Choose a complex µ and define the state
|µ; 2S〉 as

|µ; 2S〉 = N − 1
2

2S (|µ|2)(Ŝ− + µ)2S |0〉 (31)

= N − 1
2

2S (|µ|2)
2S∑
p=0

(
2S
p

)
µ2S−p(Ŝ−)p|0〉 (32)

which with

(Ŝ−)p|0〉 =
[
p!(2S)!

(2S − p)!

] 1
2

|p〉 (33)

where |p〉 satisfy

Ŝz|p〉 = (S − p)|p〉 0 � p � 2S (34)

results in

|µ; 2S〉 = N − 1
2

2S (|µ|2)
2S∑
p=0

[
(2S)!

(2S − p)!

] 3
2 1

(p!)
1
2

µ2S−p|p〉 (35)

= N − 1
2

2S (|µ|2)
2S∑
p=0

p!

(
2S
p

)3
2

µ2S−p|p〉. (36)

If 〈µ; 2S|µ; 2S〉 = 1 then for |µ|2 ≡ x

N2S(x) =
2S∑
p=0

[(2S − p)!]2

(
2S
p

)3

xp (37)

= ((2S)!)2R2S(x) (38)

where the polynomial R2S(x) defined in (38) as

R2S(x) =
2S∑
p=0

1

(p!)2

(
2S
p

)
xp (39)

can be expressed through the generalized hypergeometric function as

R2S(x) = 1F2(−2S; 1, 1; −x). (40)

Using exclusively the angular momentum commutation relations, a matrix element of a
general function 〈µ; 2S|g(Ŝ+, Ŝ−, Ŝz)|µ; 2S〉 can be calculated in a closed form. We quote
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one example here:

〈µ; 2S|Ŝ−|µ; 2S〉 = µ

N2S(|µ|2)

×
2S∑
p=1

p!(p − 1)!

[(
2S
p − 1

)(
2S
p

)] 3
2 √

p(2S + 1 − p)|µ|2(2S−p). (41)

We now require the resolution of unity in terms of states |µ; 2S〉 of equation (31) seeking
W2S(|µ|2) > 0 such that∫ ∫

C

d2µ|µ; 2S〉W2S(|µ|2)〈µ; 2S| =
2S∑
p=0

|p〉〈p| = I2S. (42)

Through corresponding modifications of the considerations leading to equation (16),
equation (42), using equations (35) and (38), transforms into (|µ|2 ≡ x):

π

2S∑
p=0

|p〉〈p|
[
p!
(2S
p

)3
(2S)!2

∫ ∞

0
x2S−p

[
W2S(x)

R2S(x)

]
dx

]
= I2S (43)

resulting in the following truncated Stieltjes power–moment problem for an unknown function:
W̃2S(x) = W2S(x)/R2S(x):

π

∫ ∞

0
xpW̃2S(x) dx = (2S − p)!(p!)3

(2S)!
p = 0, 1, . . . , 2S. (44)

We will obtain W̃2S(x) again using the Mellin convolution technique and call it the principal
solution. Setting p → s − 1 for complex s, equation (44) takes the form

π

∫ ∞

0
xs−1W̃2S(x) dx =  (2S + 2 − s) (s)3

(2S)!
Re s < 2S + 2. (45)

Use equation (22) again with f ∗(s) =  (2S + 2 − s) (s) with Re s < 2S + 2, and
g∗(s) =  2(s)/(2S)! ≡ g∗

1(s) · g∗
1(s)/(2S)! where g1(x) = e−x . We once again apply

equation (22) to g∗
1(s) · g∗

1(s) and observe that g(x) = 2K0(2
√
x)/(2S)!, where K0(y) is the

modified Bessel function of the second kind (or the MacDonald function), as a consequence
of the Sommerfeld representation of Kν(y):

Kν(y) = 1

2

(y
2

)ν ∫ ∞

0

e−t− y2

4t

t ν+1
dt. (46)

Now perform the Mellin convolution of f ∗(s) and g∗(s) and get

π(2S)!W̃2S(x) = 2 (2S + 2)
∫ ∞

0

K0(2
√
t)

(1 + x
t
)2S+2

1

t
dt (47)

and

W̃2S(x) = 4(2S + 1)

π

∫ ∞

0

y4S+3K0(2y)

(y2 + x)2S+2
dy (48)

which is a positive function of x, establishing the completeness of |µ; 2S〉. The integral
in equation (48) can be expressed in terms of the infinite series of gamma and polygamma
functions:

W̃2S(x) = 1

2π

1

(2S)!

∞∑
k=0

xk
 (2S + 2 + k)

 3(k + 1)
[2 ln(x)(3ψ(1 + k)− ψ(2S + 2 + k))− ln2(x)

−π2 − ψ2(2S + 2 + k)− ψ(1)(2S + 2 + k)− 9ψ2(1 + k)

+3ψ(1)(1 + k) + 6ψ(2S + 2 + k)ψ(1 + k)] (49)
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Figure 3. W2S(x) versus x for S = 1, 9
2 , 12. The lowest curve corresponds to S = 1, the middle

curve to S = 9
2 , and the highest curve to S = 12.

where ψ(t) is the digamma function, and ψ(1)(t) is the polygamma function of order one,
compare [23].

Note in passing, that equation (49) can also be cast in a more compact form using the
Meijer G-function [24]:

W̃2S(x) = 1

π(2S)!
G

3,1
1,3

(
x

∣∣∣∣ −2S − 1
0, 0, 0

)
. (50)

The graphical representation ofW2S(x) is given in figure 3, and the graphical representation
of W̃2S(x) is given in figure 4, for 2S = 2, 9, 24.

In full analogy with equation (30) the additional minimal set of solutions of equation (44)
is the one-parameter family

W̃2S(x; ρ) = W̃2S(x)

(
1 + ρ

e−xL2S+1(x)

W̃2S(x)

)
(51)

where ρ < ρ2S to assure the positivity of W̃2S(x; ρ): ρ1 = 1
10 , ρ2 = 1

10 , ρ3 = 1
25 , ρ4 = 1

42 . . . ,
etc.

4. Discussion and conclusions

Coherent states are an extremely efficient and flexible tool to treat very different aspects of
quantum problems. They permit one to analyse the ground state as well as the semiclassical
limit involving high-quantum number excited states. The minimal set of defining conditions for
coherent states, as expressed in [1,3] is: (a) normalizability, (b) continuity in the label (which
for both cases discussed in this work is an arbitrary complex number), (c) the resolution of
unity, or completeness. The actual key for utility of coherent states is their property (c) which
allows one to use them as a (usually non-orthogonal) basis.
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Figure 4. W̃2S(x) versus x for S = 1, 9
2 , 12. For x > 0.1, the highest curve corresponds to S = 1,

the middle curve to S = 9
2 , and the lowest curve to S = 12.

In this work we have extended the construction of coherent states to include two new
families which are generated by a binomial distribution instead of an exponential (as in case of
standard boson- and spin-coherent states). Whereas (a) and (b) are satisfied here automatically
(the states are polynomial in nature), point (c) needed special attention. The new feature of these
states is that they are linear combinations of a finite number of Fock states, for both the spin
and boson cases. The weight functions in the resolution of unity have been obtained by solving
the truncated Stieltjes moment problem. To this end we have adapted to the truncated case the
method of inverse Mellin transform developed previously for the full Stieltjes problem [12,13].
Whereas in the spin case the solution of Radcliffe [2], see equation (9b), already involved the
truncated problem, the truncated boson problem appears to be new.

The common feature of the truncated moment problems, such as those in equations (18)
and (44), is the non-unique character of their solutions. We have derived and presented in
equations (30) and (51) the one-parameter minimal sets of their respective solutions. We
still owe the reader the clarification of the term ‘minimal’. By this term we mean that
in producing positive weight functions we have added to the principal solutions (which
happen to be monotonic functions) a function whose exactly M + 1 first moments vanish,
i.e φM+1(x) = e−xLM+1(x) where Ln(x) is Laguerre polynomial. A more general set of
solutions is obtained by adding a linear combination of functions having first M + 1 + r ,
(r = 0, 1, 2, . . . , k) moments vanishing, that is in context of equation (30), forming a multi-
parameter family

W̃M(x; κ0, κ1, κ2, . . . , κk) = W̃M(x)

(
1 +

e−x∑k
r=0 κrLM+1+r (x)

W̃M(x)

)
. (52)

Note that in equation (52) k may formally be equal to infinity. The parameters {κl}l=0,1,2,...,k

have to be so chosen as to assure the positivity of W̃M(x; {κl}l=0,1,2,...,k). However, the φM+1(x)

constitute just one subset of an infinite set of various functions whose first M + 1 moments
vanish [21], so that an infinity of further generalizations of equation (52) are possible. They
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include non-analytic and singular functions, too. In any case the resulting huge arbitrariness in
the choice of the weight function is a real problem. One can conceive certain criteria of either
mathematical or of physical nature, for choosing the ‘best’ weight function. This challenging
and still not entirely resolved question is under our active consideration.

The novel coherent wavefunctions proposed in this work are particularly well suited to
tackle the problems with the energy cut-off, i.e. the situations where a finite number of Fock
states is sufficient to describe the physics. Several aspects of this approach have been reviewed
recently [25]. In a parallel development, the truncated coherent states appear naturally in the
theory of field–atom interactions in the highly nonlinear media in the cavity [16, 26]. The
method exposed in this work permits one to establish the completeness properties of many
truncated states. Other important variants of coherent states, such as the photon-added [27,28]
and photon-substracted states [29] can be also successfully analysed by this method.
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